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1

Descriptions of turbulence

An important question arising from many experimental
situations (for example, studying turbulent behavior in a fluid flow) is
the following: How does one explain a situation in which one gets a
signal (i.e. a time series) which is nonperiodic, indeed a chaotic signal?

One idea is the following: if one has a system which gives a ‘noisy’
signal, that is nonperiodic and irregular, this means that there must be
some inputs which are also noisy and nonperiodic. The formalisation
of this idea lies on the so-called stochastic evolution equations, namely
equations of the form

dx(t)

dt
where w(t) is the noise term (e.g. a stochastic process).

As far as hydrodynamical systems are concerned, the (infinite) set
of observables x(¢) will represent the modes amplitude (to be defined
later), and an experiment carried out with a sufficiently excited system
(for example high values of the Rayleigh number) yields a situation
just like the one sketched in Fig. 1. Let us stress that turbulence is the

=F (x(t))+w(1), (2)

Fig. 1. A chaotic signal obtained by the simple deterministic
difference equation x, ., =4x(1 —x,). Any correlation test would
reveal rapid decorrelation between successive iterations, making
this sequence akin to a random sequence.
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4 1 — Deterministic interpretation of chaotic signals

type of physical phenomena where one gets such a noisy signal. It is
interesting to note that some people have considered that the theory
of turbulence must necessarily be of the form expressed by (2).
Nevertheless, there are other kinds of explanations of a non-
periodic signal. One of them involves the presence of many oscillators
(Landau). According to this theory, the time evolution of the physical
parameter describing a turbulent fluid is given (asymptotically) by:

x(t):f(wlt9a)2[3 e ,wkt)zf(¢la¢2, e ,¢k)a (3)
where f is a periodic function of period 27 in each of its arguments,
and w,,w,, . . . ,w; are rationally independent frequencies; x(z) is then

a quasiperiodic function of t. The motion (3) describes a k-dimensional
torus T* (i.e. the product of k circles) embedded in R™ and constitutes
what 1s called a quasiperiodic attractor. Such attractors are a
generalisation of periodic orbits, but they describe motions which
look indeed nonperiodic and very irregular, thus suggesting
turbulence.

In general, in a quasiperiodic time evolution it does not make sense
to specify which are the frequencies w, . . . ,w, of the motion. In fact,
if we look at the Fourier transform of the signal x(t):

x(t): Z '£n1 . ‘,,kexp[i(wlnl + - +wknk)t] (4)
nl PP nk
we can see that all the harmonics are present. Therefore, we can
choose any other set of ‘basic’ frequencies of the form:

w;=nj;0; + A+ npw, with j=1.. .k, (5)

where the matrix (n;;) has integer entries and determinant + 1. Then,
the number k of frequencies of a quasiperiodic motion is defined as the
minimum number of rationally independent frequencies of the form
(5) which are present in the Fourier transform (4). This is just what is
referred to as the number of modes of the system, and, in a sense, it
plays the role of effective ‘dimension’ of a quasiperiodic motion.
We shall see later that, as far as nonlinear dynamical systems are
concerned, even a finite-dimensional motion need not be quasi-
periodic (indeed it may be chaotic), and the concept of ‘number of
modes’ must be replaced by other concepts such as ‘information
dimension’, or ‘number of non-negative characteristic exponents’.



Descriptions of turbulence 5

Now, starting from the evolution x(t) of coordinates, we can
introduce a more general observable:

G(t)=g(x(1)), (©)
where g: R™—R is a differentiable function. Then, a first indicator of
the qualitative nature of the motion is the power spectrum or frequency
spectrum (see Fig. 2), which measures the amount of energy per unit
time contained in the signal g(¢) as a function of the frequency w:
2

M

T
S(w)=(const.) lim —,11: l JG(t)exp( —iwt)dt
T—-o
0

Fig. 2. (a) The spectra of the velocity of a fluid occupying the
interval between two coaxial cylinders, when the inner cylinder
is rotated at three different speeds (Couette flow). (b) The
spectra of the convective heat transport in a liquid layer heated

from below at three different heating intensities

(Rayleigh-Bénard convection). In both cases, from the top to
the bottom we see a periodic spectrum, a quasiperiodic
spectrum and a continuous spectrum. From Gollub and

Swinney (1978).
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6 I — Deterministic interpretation of chaotic signals

In the particular case of quasiperiodic time evolutions we find that
S(w) is formed of discrete peaks corresponding to the basic frequen-
cles w, . .. w, and their linear combination with integer coefficients

k
Sw)y= Y c,,lm,,,‘(§<a)—2n,-w,~>. (8)

nyoLom i=1
However, in practice one never computes the limit in (7), therefore the
peaks have, at least, a width 2n/T. Moreover, the structure of the
spectrum, namely the number of peaks which are really visible,
changes with the choice of the function g, and experimentally it is
difficult to observe more than a few independent frequencies.

Now, the main problem with a quasiperiodic theory of turbulence
{putting several oscillators together) is the following: when there is a
nonlinear coupling between the oscillators, it very often happens that
the time evolution does not remain quasiperiodic. As a matter of fact,
in this latter situation, one can observe the appearance of a feature
which makes the motion completely different from a quasiperiodic
one. This feature is called sensitive dependence on initial conditions and
turns out to be the conceptual key to reformulating the problem of
turbulence.

Let us assume that the system has a deterministic time evolution
defined by an autonomous ordinary differential equation like {1). Let
x(t) be the solution of such an equation corresponding to the initial
condition x(0). If we change slightly the position of the initial point:
x(0)—x'(0)=x(0) + 6x(0), the point at time ¢ will also be changed (see
Fig. 3).

Generally speaking, from the continuity of the solutions of an

Fig. 3. Effect of a small change of initial condition.
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Descriptions of turbulence 7

ordinary differential equation with respect to the initial conditions,
one expects that, if 6x(0) is small, 5x(t) is also small. But, what may
happen is that, when the time becomes large, the small initial distance
grows anyway, and it may grow exponentially fast:
x(t) ~ ox(0)exp(At), where A measures the mean rate of divergence of
the orbits. In this case the motion, although purely deterministic, has
those stochastic features referred to as chaos. In fact, in all those cases
in which the initial state is given with limited precision (if we assume
that the space-time is continuous this is always the case because a
generic point turns out to be completely specified only by an infinite
amount of information, for example by an infinite string of numbers),
we can observe a situation in which, when time becomes large, two
trajectories emerge from the ‘same’ initial point. So, even though there
is a deterministic situation from a mathematical point of view (the
uniqueness theorem for ordinary differential equations is not in
question), nevertheless the exponential growth of errors makes the
time evolution self-independent from its past history and then
nondeterministic in any practical sense.

However, it is quite obvious that a quasiperiodic motion rep-
resented by a solution like (3) cannot exhibit sensitive dependence on
initial conditions. A small change in initial conditions simply replaces
the arguments wyf, ..., by wit+ay, ... 0t +a, where
oy, . . . 0 are small

We shall see that a theoretical approach which wants to describe in
a coherent fashion some hydrodynamic phenomena, in particular
which wants to explain a noisy signal like the one in Fig. 1, has to put
itself in the picture of deterministic noise; so that the meaning of
turbulence will get close to those of chaos, dynamical instability and
strange attractors.

The existence of sensitive dependence on initial conditions was first
noticed by Hadamard, at the end of the last century, when studying
the geodesic flow on compact surfaces of constant negative curvature.
Such a compact surface M is obtained from the Lobachevsky plane by
making certain identifications. The Lobachevsky plane itself may be
viewed as the complex upper half-plane Imz>0 with the metric
ds? =(dx? +dy?)/y?, where z=x +1y. The geodesics are then the half-
circles and straight lines orthogonal to the x-axis. Returning to the
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compact manifold M, we let T; M be the set of vectors tangent to M
and oflength 1. An element (x,u) of T| M is thus a vector tangent to M
at some point x. There is a unique oriented geodesic of M passing
through x and tangent to u. Let x, be the point at distance ¢ of x on the
geodesic, and u, the unit vector tangent to the geodesic at x,. The map
which sends (x,u) to (x,u) is a diffefomorphism f* of M, T (dif-
ferentiable map with differentiable inverse), and the family (f*) is the
geodesic flow. This is a particular case of an Anosov flow on T M,
which means that it has the following remarkable property: the
tangent spaces to Ty M can be written as direct sums E°+ E" + E°
where E° is one-dimensional in the direction of the flow and E*
(respectively E*) is exponentially expanded (respectively contracted)
by the flow. We shall come back later to a more precise discussion of
these properties but, for the moment, we can get an intuitive idea of
the dynamical instability of a hyperbolic flow by looking at Fig. 4.

After Hadamard had realised the possible presence of dynamical
instability due to sensitive dependence on initial conditions, Poincaré
and Duhem wrote popular texts explaining the philosophical import-
ance of this feature. Then, although this was not forgotten in
mathematics, it seems that for a long period it was forgotten by
physicists.

The rediscovery of sensitive dependence on initial conditions,
about 25 years ago, corresponded to the availability of electronic
computers, which allowed the ‘step-by-step’ computation of the
solutions of differential equations. This kind of computation has
shown, and continues to show with strong evidence, that many time

Fig. 4. The t-axis (the direction of the flow) is the intersection of
two surfaces of trajectories approaching it as t—co (the (x,t)
surface) and as t— — oo (the (y,t) surface); the remaining
trajectories move away both for t—» oo and t— —co. From
Arnold (1980).
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Descriptions of turbulence 9

evolutions related to physical as well as technological problems do
exhibit chaotic behavior, ie. sensitive dependence on initial
conditions.

A celebrated example is the Lorenz system (see Lorenz, 1963), a
nonlinear time evolution in R* defined by the equations:

= _ox+

E— oX + gy

d .

5= —xy+rx—y ©)
d

d—j:xy—bz.

These equations are obtained by truncation of the Navier-Stokes
equation, and give an approximate description of a horizontal fluid
layer heated from below. The warmer fluid formed at the bottom
tends to rise creating convection currents. This is similar to what
happens in the earth’s atmosphere. For sufficiently intense heating the
time evolution has sensitive dependence on initial conditions, thus
representing a very irregular and chaotic convection. This fact was
used by Lorenz to justify the so-called ‘butterfly effect’, a metaphor of
the imprecision of weather forecasting. Actually, how this system
really relates to turbulence (in particular to atmospheric turbulence)
is not known yet, but what is remarkable is that it gives rise to a type
of attractor which is nonclassical (neither periodic nor quasiperiodic).

The geometrical object described by the points of the trajectory is
our first example of a strange attractor. We shall worry later about the
mathematical definition of a strange attractor; for the moment, let us
say that it is an infinite set of points (of which Fig. 5 shows a subset), in
an m-dimensional space (here m = 3), which represents the asymptotic
behavior of a chaotic system.

It is worth remarking that a time evolution which is chaotic in the
sense sketched above usually exhibits a continuous power spectrum.
On the other hand, the power spectrum of the velocity of a turbulent
fluid is found experimentally to be continuous (see, for example, the
bottom of Fig. 2). At first, this fact was attributed to the accumulation
of a large number of independent frequencies, but accurate experi-
ments by Swinney have shown that, when the fluid is excited above a



10 I — Deterministic interpretation of chaotic signals

certain threshold, a sharp transition towards a really continuous
spectrum takes place.

So far, the power spectrum is the first indicator we have introduced
which enables us to distinguish regular and chaotic motions. How-
ever, it is not really a ‘good’ indicator for the specific analysis of
chaotic motions on strange attractors because the ‘dimension’ of a
chaotic motion is no longer related to the number of independent
frequencies (i.c. the number of modes); rather, it constitutes an
important statistical feature in itself, which can be related both to the
temporal aspect of chaos (number of positive characteristic ex-
ponents) and to its geometrical aspect (scale laws characterising the
self-similar structure of strange attractors).

Fig. 5. The trajectory of the points (x,y,z) corresponding to the
solutions of (9) with initial conditions near (0,0,0) and with
o=10, b=8/3, r=28. From Lanford (1977).




